Автомат получает на вход пятизначное число. По этому числу строится новое число по следующим правилам. 1. Складываются отдельно первая, третья и пятая цифры, а также вторая и четвёртая цифры. 2. Полученные два числа записываются друг за другом в порядке неубывания без разделителей. Пример. Исходное число: 63 179. Суммы: 6 + 1 + 9 = 16; 3 + 7 = 10. Результат: 1016. Укажите наименьшее число, при обработке которого автомат выдаёт результат 621.
Автомат получает на вход пятизначное число. По этому числу строится новое число по следующим правилам: 1. Складываются отдельно первая, третья и пятая цифры, а также вторая и четвёртая цифры. 2. Полученные два числа записываются друг за другом в порядке неубывания без разделителей. Пример. Исходное число: 63 179. Суммы: 6 + 1 + 9 = 16; 3 + 7 = 10. Результат: 1016. Укажите наименьшее число, при обработке которого автомат выдаёт результат 621.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1) Строится двоичная запись числа N. 2) К этой записи дописывается (дублируется) последняя цифра. 3) Затем справа дописывается 0, если в двоичном коде числа N чётное число единиц, и 1, если нечётное. 4) К полученному результату дописывается ещё один бит чётности так, чтобы количество единиц в двоичной записи полученного числа стало чётным. Полученная таким образом запись (в ней на три разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число N, после обработки которого автомат получает число, большее 90. В ответе это число запишите в десятичной системе.
Автомат получает на вход пятизначное число. По этому числу строится новое число по следующим правилам. 1. Складываются отдельно первая, третья и пятая цифры, а также вторая и четвёртая цифры. 2. Полученные два числа записываются друг за другом в порядке неубывания без разделителей. Укажите наименьшее число, при обработке которого автомат выдаёт результат 621. Пример. Исходное число: 63 179. Суммы: 6 + 1 + 9 = 16; 3 + 7 = 10. Результат: 1016.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1) Строится двоичная запись числа N. 2) К этой записи дописывается справа бит чётности: 0, если в двоичном коде числа N было чётное число единиц, и 1, если нечётное. 3) К полученному результату дописывается ещё один бит чётности. Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число R, большее 150, которое может быть получено в результате работы этого алгоритма. В ответе это число запишите в десятичной системе.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1) Строится двоичная запись числа N. 2) К этой записи дописывается (дублируется) последняя цифра. 3) Затем справа дописывается бит чётности: 0, если в двоичном коде полученного числа чётное число единиц, и 1, если нечётное. 4) К полученному результату дописывается ещё один бит чётности. Полученная таким образом запись (в ней на три разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число N, после обработки которого автомат получает число, большее 100. В ответе это число запишите в десятичной системе.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1) Строится двоичная запись числа N. 2) К этой записи дописывается (дублируется) последняя цифра. 3) Затем справа дописывается 0, если в двоичном коде числа N чётное число единиц, и 1, если нечётное. 4) К полученному результату дописывается ещё один бит чётности так, чтобы количество единиц в двоичной записи полученного числа стало чётным. Полученная таким образом запись (в ней на три разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите минимальное число N, после обработки которого автомат получает число, большее 90. В ответе это число запишите в десятичной системе.
Автомат обрабатывает натуральное число N по следующему алгоритму: 1) Строится двоичная запись числа N. 2) Складываются все цифры полученной двоичной записи. В конец записи (справа) дописывается остаток от деления полученной суммы на 2. 3) Предыдущий пункт повторяется для записи с добавленной цифрой. 4) Результат переводится в десятичную систему и выводится на экран. Пример. Дано число N = 13. Алгоритм работает следующим образом: 1) Двоичная запись числа N: 1101. 2) Сумма цифр двоичной записи 3, остаток от деления на 2 равен 1, новая запись 11011. 3) Сумма цифр полученной записи 4, остаток от деления на 2 равен 0, новая запись 110110. 4) На экран выводится число 54. Сколько различных чисел, принадлежащих отрезку [210; 260], могут появиться на экране в результате работы автомата?
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1) Строится двоичная запись числа N. 2) К этой записи дописывается ещё три или четыре разряда по следующему правилу: если N нечётное, то слева к нему приписывается "1", а справа - "11". В противном случае слева приписывается "11", а справа "00". Например, N = 410 = 1002 => 11100002 = 11210 = R Полученная таким образом запись (в ней на три или четыре разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Укажите наибольшее число R, меньшее 127, которое может быть получено с помощью описанного алгоритма. В ответ запишите это число в десятичной системе счисления.
Автомат получает на вход четырёхзначное число. По этому числу строится новое число по следующим правилам. 1. Складываются первая и третья, а также вторая и четвёртая цифры исходного числа. 2. Полученные два числа записываются друг за другом в порядке возрастания (без разделителей). Пример. Исходное число: 3165. Суммы: 3 + 6 = 9; 1 + 5 = 6. Результат: 69. Укажите минимальное число, в результате обработки которого, автомат выдаст число 1113.
Автомат получает на вход трёхзначное число. По этому числу строится новое число по следующим правилам. 1. Из цифр, образующих десятичную запись N, строятся наибольшее и наименьшее возможные двузначные числа (числа не могут начинаться с нуля). 2. На экран выводится разность полученных двузначных чисел. Пример. Дано число N = 351. Наибольшее двузначное число из заданных цифр – 53, наименьшее – 13. На экран выводится разность 53 – 13 = 40. Чему равно количество трёхзначных чисел N, в результате обработки которых на экране автомата появится число 35?
Автомат получает на вход трёхзначное число. По этому числу строится новое число по следующим правилам. 1. Из цифр, образующих десятичную запись N, строятся наибольшее и наименьшее возможные двузначные числа (числа не могут начинаться с нуля). 2. На экран выводится разность полученных двузначных чисел. Пример. Дано число N = 351. Наибольшее двузначное число из заданных цифр – 53, наименьшее – 13. На экран выводится разность 53 – 13 = 40. Чему равно количество чисел N на отрезке [500; 600], в результате обработки которых на экране автомата появится число 10?
Автомат получает на вход пятизначное число. По этому числу строится новое число по следующим правилам. 1. Складываются отдельно первая, третья и пятая цифры, а также вторая и четвёртая цифры. 2. Полученные два числа записываются друг за другом в порядке неубывания без разделителей. Пример. Исходное число: 63 179. Суммы: 6 + 1 + 9 = 16; 3 + 7 = 10. Результат: 1016. Укажите наименьшее число, при обработке которого автомат выдаёт результат 621.
Автомат обрабатывает натуральное число N по следующему алгоритму: 1) Строится двоичная запись числа N. 2) Из записи удаляются две последние цифры. 3) Полученное число переводится в десятичную запись и выводится на экран. Сколько разных значений будет показано на экране автомата при последовательном вводе всех натуральных чисел от 20 до 600?
Автомат получает на вход трёхзначное число. По этому числу строится новое число по следующим правилам. 1. Из цифр, образующих десятичную запись N, строятся наибольшее и наименьшее возможные двузначные числа (числа не могут начинаться с нуля). 2. На экран выводится разность полученных двузначных чисел. Пример. Дано число N = 351. Наибольшее двузначное число из заданных цифр – 53, наименьшее – 13. На экран выводится разность 53 – 13 = 40. Чему равно количество чисел N на отрезке [500; 600], в результате обработки которых на экране автомата появится число 10?
Автомат получает на вход трёхзначное число. По этому числу строится новое число по следующим правилам. 1. Из цифр, образующих десятичную запись N, строятся наибольшее и наименьшее возможные двузначные числа (числа не могут начинаться с нуля). 2. На экран выводится разность полученных двузначных чисел. Пример. Дано число N = 351. Наибольшее двузначное число из заданных цифр – 53, наименьшее – 13. На экран выводится разность 53 – 13 = 40. Чему равно количество чисел N на отрезке [100; 200], в результате обработки которых на экране автомата появится число 30?