В треугольнике ABC точка M - середина AC, точка К - середина BC, причем MК=5 дм. Длину какой стороны можно найти по этим данным, и чему она равна?
В треугольнике ABC точка M - середина стороны AB, точка К - середина стороны AC. Площадь треугольника AMК равна 20 кв.см. Найдите площадь четырехугольника MКCB.
Площадь треугольника ABC равна 12 кв.м. Найдите площадь треугольника, образованного средними линиями треугольника ABC.
В треугольнике ABC стороны AB, AC и BC равны соответственно 4 см, 3 см и 5 см. Точка M - середина AB , точка К - середина BC. Найдите длину отрезка МК.
В равнобедренном треугольнике с основанием AC угол C равен 50°, отрезок MH соединяет середины сторон AB и BC. Найдите углы треугольника ВМН.
В треугольнике ABC точки H и M - середины сторон CB и CA соответственно. Укажите, какой отрезок является средней линией треугольника ABC .
В треугольнике OKB точка M - середина OK, точка H - середина BO. Через точку O проведен отрезок OA до пересечения с продолжением стороны KB в некоторой точке A. Продолжение прямой MH пересекает отрезок OA в точке T. Найдите отношение длин отрезков OT и AT.
В треугольнике ABC точка M - середина стороны AB и точка К - середина стороны BC. Периметр треугольника MBК равен 10 см, MК=4 см. Найдите периметр четырехугольника AMКC.
В прямоугольном треугольнике ABC катет AB=12 см. Средняя линия треугольника, параллельная гипотенузе, равна 6,5 см. Найдите катет BC этого треугольника.
Периметр треугольника ABC равен 28 см. Найдите периметр треугольника, образованного средними линиями треугольника.
В треугольнике ABC : MТ - средняя линия треугольника, параллельная стороне AC, KТ - средняя линия треугольника, параллельная стороне AB. Стороны треугольника AB=7 дм, BC=5 дм, AC=60 см. Найдите периметр четырехугольника АМТК.
Столб подпирает детскую горку посередине. Найдите высоту l этого столба, если высота горки h равна 6 м. Ответ дайте в метрах.
Катеты прямоугольного треугольника равны 12 см и 5 см. Найдите наибольшую среднюю линию этого треугольника.
В прямоугольном треугольнике с прямым углом C и углом A, равным 30°, сторона BC=8 см. Найдите длину средней линии, соединяющей середины сторон AC и BC.
В прямоугольном треугольнике ABC с катетами AB=9 см и BC=12 см найдите среднюю линию, параллельную гипотенузе.
Площадь треугольника, вершины которого находятся в серединах сторон данного треугольника, равна 13 кв.дм. Найдите площадь данного треугольника.
Середины сторон произвольного параллелограмма последовательно соединены отрезками. Определите вид получившегося четырехугольника.